Qı	Jestic	on	Generic scheme	Illustrative scheme	Max mark	
1.			• ¹ write down binomial expansion ^{1,3,4}	•1 $= \binom{3}{0} \left(\frac{2}{y^2}\right)^3 + \binom{3}{1} \left(\frac{2}{y^2}\right)^2 \left(-5y\right) \\ + \binom{3}{2} \left(\frac{2}{y^2}\right) \left(-5y\right)^2 + \binom{3}{3} \left(-5y\right)^3$	4	
			• ² resolve signs ^{3,4}			
			• ³ simplify coefficients or powers of y ^{2,4}			
			• ⁴ complete simplification and obtain expression ^{2,4,5,6}	• ^{2,3,4} $\frac{8}{y^6} - \frac{60}{y^3} + 150 - 125y^3$		
Note	es:					
		-	correct form for binomial coefficient ative powers of y .	S.		
3. F	or cai	ndida	tes who expand $\left(\frac{2}{y^2} + 5y\right)^3$ using the B	Binomial Theorem $ullet^1$ and $ullet^2$ are not ava	ilable.	
4. C	andic	lates	who expand $\left(\frac{2}{y^2} - 5y\right)^3$ without using	g the Binomial Theorem may be award	ded ●²,	
			$t \bullet^1$ is not available.	(150.0)		
6. D	 •⁴ is not available for a final expression which contains the term '150y⁰'. Do not award •⁴ where the candidate produces incorrect working subsequent to a correct simplification. 					
Com	monl	ly Ob	served Responses:			

Qı	Jestio	on	Generic scheme	Illustrative scheme	Max mark
2.			• ¹ state expression	• $\frac{x^2 - 6x + 20}{(x+1)(x-2)^2} = \frac{A}{(x+1)} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2}$	4
			• ² form equation	• ² $x^2 - 6x + 20 = A(x-2)^2 + B(x+1)(x-2) + C(x+1)$	
			• ³ obtain two of A, B and C	• ³ $A = 3, B = -2, C = 4$	
			• ⁴ obtain final constant and state expression	• ⁴ $\frac{3}{(x+1)} - \frac{2}{(x-2)} + \frac{4}{(x-2)^2}$	
Note	es:				<u> </u>
1. A	t ● ⁴ a	ccep	$t \frac{3}{(x+1)} + \frac{-2}{(x-2)} + \frac{-2}{(x-2)}$	$\frac{4}{(x-2)^2}$ but do not accept $\frac{3}{(x+1)} + -\frac{2}{(x-2)} + \frac{4}{(x-2)^2}$.	
Com	monl	ly Ob	served Responses:		
Alte	rnati	ve M	ethod		
$\frac{x^2}{(x+x)^2}$	$\frac{-6x}{-1}$	$(+20)^{2}$	$=\frac{A}{x+1} + \frac{Bx+C}{\left(x-2\right)^2}$	award •1	
x^2 –	6x+	20 =	$A(x-2)^2 + (Bx+C)(.$	$(x+1)$ and one of A, B, C award \bullet^2	
Rem	ainin	g two	o of A, B, C ($A = 3, A$	B = -2, C = 8) award • ³	
$\frac{3}{x+1}$	$\frac{1}{1} + \frac{8}{(x)}$	$\frac{-2x}{(-2)^2}$	$\frac{1}{x^2} = \frac{3}{x+1} + \frac{4-2(x-2)}{(x-2)^2}$		
			$=\frac{3}{x+1} - \frac{2}{(x-2)} + \frac{3}{(x-2)} + \frac$	$\frac{4}{-2)^2}$ award • ⁴	
Inco	rrect	Met	hod		
$\frac{x^2}{(x+x)^2}$	$\frac{-6x}{-1}$	$(+20)^{2}$	$=\frac{A}{x+1}+\frac{B}{\left(x-2\right)^2}$	do not award \bullet^1	
x^2 –	6x +	20 =	$A(x-2)^2 + B(x+1)$	do not award \bullet^2	
<i>B</i> =	4, <i>A</i> =	=3 o	r $B = 4, A = 1$	award • ³	
$\left \frac{3}{x+1} \right $	$\frac{1}{1} + \frac{1}{(x)}$	$\frac{4}{(-2)^2}$	or $\frac{1}{x+1} + \frac{4}{(x-2)^2}$	do not award \bullet^4	

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark		
3.			 ¹ evidence use of quotient rule with one term of numerator correct 	• $2xe^{x^2-1}(x^2-1)$	3		
			• ² complete differentiation	• ² $\frac{2xe^{x^2-1}}{(x^2-1)^2}$			
			• ³ simplify ^{1,2,3}	• ³ $\frac{2xe^{x^2-1}(x^2-2)}{(x^2-1)^2}$			
Note	es:			I			
2. D a 3. V c f	1. At • ³ accept $\frac{2x^3e^{x^2-1}-4xe^{x^2-1}}{(x^2-1)^2}$ but not accept $\frac{2xe^{x^2-1}((x^2-1)-1)}{(x^2-1)^2}$ (GM Principle (l)). 2. Do not award • ³ where the candidate produces further incorrect simplification subsequent to a correct answer. 3. Where a candidate differentiates incorrectly • ³ may be available provided like terms are collected in the numerator. Where this is not possible the expression should be fully factorised (this need not extend to exponential functions of differing powers). Where no simplification is possible • ³ is not available.						
Corr	nmon	ly Obs	erved Responses:				
Alte	rnati	ve Me	thod 1 (Product Rule)				
• ¹ 2	$2xe^{x^2-1}$	$(x^2 -$	$1)^{-1} + \dots$				
•2.	2,	xe^{x^2-1}	$(x^2-1)^{-2}$ Award • ³ as per illustrative s	scheme.			
Alte	rnati	ve Me	thod 2 (Logarithmic differentiation)				
• ¹ 1	n y =	$\ln(e^x)$	$\left 2^{2}-1 ight) - \ln \left x^2 - 1 ight $ (modulus signs not require	d)			
		`	$\frac{2x}{x^2-1}$				
$\bullet^3 \frac{d}{a}$	$\frac{ly}{lx} = \frac{\epsilon}{x}$	$e^{x^2-1}e^{x^2-1}$	$2x - \frac{2x}{x^2 - 1}$ (no further simplification req	uired but refer to Note 2)			
Alte	rnati	ve Me	thod 3 (Substitution)				
• $u = x^2 - 1, f(u) = \frac{e^u}{u}$							
	f'(x)	$=\frac{df}{du}$	$\times \frac{du}{dx}$				
		$\frac{-e^u}{2} \times \frac{1}{2}$	$2x$ Award \bullet^3 as per illustrative s	scheme			

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
4.	(a)		• ¹ evidence use of valid strategy	• $a + 4d = -6$ a + 11d = -34	2
			$ullet^2$ obtain values of a and d^{-1}	• ² $a = 10, d = -4$	

1. Candidates who state correct values for both a and d without working may be awarded \bullet^1 and \bullet^2 .

Commonly Observed Responses:

(b)	• ³ set up equation	• ³ $\frac{n}{2} [20 - 4(n - 1)] = -144$	3
	• ⁴ rearrange to standard form ¹	• $2n^2 - 12n - 144 = 0$	
	• ⁵ determine the value of n^{-2}	• ⁵ $n > 0$ \therefore $n = 12$	

Notes:

- 1. \bullet^4 may be awarded only where a quadratic equation has been expressed in standard form.
- 2. •⁵ may be awarded only where an invalid solution for n has been discarded.

Q	Question		Generic scheme	Illustrative scheme	Max mark
5.	(a)	(i)	• ¹ set up augmented matrix		4
			• ² obtain two zeros ¹	$\bullet^{2} \begin{pmatrix} 1 & 2 & -1 & & -3 \\ 0 & -10 & 7 & & 23 \\ 0 & -5 & 2\lambda + 3 & & 17 \end{pmatrix}$	
			• ³ complete row operations ¹	$\bullet^{3} \begin{pmatrix} 1 & 2 & -1 & & -3 \\ 0 & -10 & 7 & & 23 \\ 0 & 0 & 4\lambda - 1 & & 11 \end{pmatrix}$	
			• ⁴ obtain expression for z ^{2,3}	$\bullet^4 z = \frac{11}{4\lambda - 1}$	
		(ii)	$ullet^5$ state value of λ	• ⁵ $\lambda = \frac{1}{4}$	1
	(b)		• ⁶ find solution ⁴	• ⁶ $z = -1, y = -3, x = 2$	1

- 1. Only Gaussian Elimination (i.e. a systematic approach using EROs) is acceptable for the award of \bullet^2 and \bullet^3 .
- 2. Do not accept an answer of $(4\lambda 1)z = 11$ when awarding •⁴.

3. At •⁴ accept an unsimplified expression for
$$z \text{ eg } z = \frac{5 \cdot 5}{2\lambda - \frac{1}{2}}$$
.

4. Where decimal approximations are used \bullet^6 is available only where candidates work to 3sf or better.

Q	Question		Generic scheme	Illustrative scheme	Max mark
6.			• ¹ differentiate $5x^2$	• $\frac{du}{dx} = 10x$ or $du = 10xdx$	6
			• ² find limits for u^{3}	• ² $u=0, u=\frac{1}{2}$	
			• ³ replace ' $x dx$ ' ^{1,2}	• ² $u = 0, u = \frac{1}{2}$ • ³ $\frac{1}{10} \int du$	
			• ⁴ obtain integrand ^{1,2}	• $^{4} \frac{1}{10} \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-u^{2}}} du$	
			• ⁵ integrate ^{2,3,4,5}	• ⁵ $\frac{1}{10} \left[\sin^{-1} u \right]_{0}^{\frac{1}{2}}$	
			• ⁶ evaluate ^{2,6,7,8}	$\bullet^6 \frac{\pi}{60}$	

- 1. At \bullet^3 and \bullet^4 treat as bad form situations where candidates either omit limits or retain limits for x.
- 2. Where candidates attempt to integrate an expression containing both u and x, where x is either inside the integrand or erroneously taken outside as a constant, only \bullet^1 and \bullet^2 may be available.
- 3. Where candidates do not change limits but who produce working leading to

$$\frac{1}{10} \left[\sin^{-1} (5x^2) \right]_0^{\frac{1}{\sqrt{10}}}$$
, •² may be awarded.

- 4. Where candidates show no working but write down $\frac{1}{10} \left[\sin^{-1} (5x^2) \right]_0^{\frac{1}{\sqrt{10}}}$, •¹ is not available.
- 5. \bullet^5 and \bullet^6 are unavailable to candidates who having been awarded \bullet^4 subsequently proceed

to
$$\frac{1}{10} \left[\frac{\left(1 - u^2\right)^{\frac{1}{2}}}{-\frac{1}{2} \times 2u} \right]$$

- 6. For candidates who integrate incorrectly, •⁶ may be available provided division by zero does not occur.
- 7. For candidates who, upon integrating, obtain a trigonometric expression and then work in degrees \bullet^6 is unavailable.
- 8. Disregard the appearance of a decimal approximation subsequent to a simplified exact value.

Question		on	Generic scheme	Illustrative scheme	Max mark
7.	(a)	(i) \bullet^1 determine value of x		• ¹ $x = 8$	1
		(ii)	• ² find inverse ¹	• ² $P^{-1} = \frac{1}{2} \begin{pmatrix} -1 & -2 \\ 5 & 8 \end{pmatrix}$	1
		(iii)		• ³ $Q' = \begin{pmatrix} 2 & 4 \\ -3 & y \end{pmatrix}$	2
			• ⁴ obtain product ^{2,3}	• ⁴ $P^{-1}Q' = \begin{pmatrix} 2 & -2 - y \\ -7 & 10 + 4y \end{pmatrix}$	
3. •	^₄ may	be a	ot $P^{-1}Q' = \frac{1}{2} \begin{pmatrix} 4 & -4-2y \\ -14 & 20+8y \end{pmatrix}$ but not warded only where y is present.	$P^{-1}Q' = \frac{1}{2} \begin{pmatrix} -2+6 & -4-2y \\ 10-24 & 20+8y \end{pmatrix}.$	
	(b)		• ⁵ state condition for singularity ^{1,2}	• ⁵ det $R = 0$ or one row is a multiple of the other	2
			• ⁶ obtain value for z^{-2}	• $t = 15$	
2. F	let R = or an	answ	hay be stated or implied in the workin wer of $z = 15$ without justification, \bullet^5	-	

(Question		Generic scheme	Illustrative scheme	Max mark			
8.			• ¹ start process	• $1595 = 1 \times 1218 + 377$	4			
			• ² obtain remainder of 29 ¹	$1218 = 3 \times 377 + 87$ • ² 377 = 4 × 87 + 29 87 = 3 × 29 + 0				
			• ³ express gcd in terms of 377 and 1218	• ³ 29 = 377 - 4(1218 - 3 × 377)				
			• ⁴ state values of a and b^{-2}	• $a = 13, b = -17$				
No	tes:		I	I				
1. 2. 3.								
Co	Commonly Observed Responses:							

Q	Question		Generic scheme	Illustrative scheme	Max mark
9.			• ¹ separate variables and write down integral equation ^{1,7}	•1 $\int \frac{dy}{1+y^2} = \int e^{2x} dx$	5
			• ² integrate LHS ²	• ² $\tan^{-1} y$	
			• ³ integrate RHS ³	$\bullet^3 \frac{1}{2}e^{2x} + c$	
			• ⁴ evaluate constant of integration _{2,3,4,5}	$\bullet^4 c = \frac{\pi}{4} - \frac{1}{2}$	
			• ⁵ express y in terms of $x^{3,5,6}$	• $y = \tan\left(\frac{1}{2}e^{2x} + \frac{\pi}{4} - \frac{1}{2}\right)$	

- 1. Do not withhold \bullet^1 where dy and dx have been omitted.
- 2. For candidates who integrate the LHS and obtain a logarithmic expression, \bullet^2 and \bullet^4 are not available.
- For candidates who omit a constant of integration, •³ may be awarded but •⁴ and •⁵ are unavailable.
- 4. At \bullet^4 accept a decimal value for the constant of integration correct to at least 3sf (0.285).
- 5. For candidates who work in degrees, \bullet^4 is unavailable but \bullet^5 may be awarded.
- 6. At •⁵ do not accept e.g. $y = \tan\left(\frac{1}{2}e^{2x}\right) + \frac{\pi}{4} \frac{1}{2}$, $y = \tan\frac{1}{2}e^{2x} + \frac{\pi}{4} \frac{1}{2}$.
- 7. Candidates who use either Integration by Parts or the Integrating Factor Method receive 0/5.

Qı	uesti	on	Generic scheme	Illustrative scheme	Max mark	
10.	(a)		• ¹ substitute formulae	• $^{1}\sum_{r=1}^{n}\left(r^{2}+\frac{1}{3}r\right)=\frac{n(n+1)(2n+1)}{6}+\frac{1}{3}\left(\frac{n(n+1)}{2}\right)$	2	
				$=\frac{n(n+1)((2n+1)+1)}{6}$		
			• ² factorise fully ¹	$\bullet^2 = \frac{n(n+1)^2}{3}$		
Note 1. A	-	o not	accept $\frac{n(n+1)(n+1)}{3}$ or $\frac{2n}{3}$	$\frac{(n+1)^2}{6}.$		
Com	mon	ly Ob	served Responses:			
	(b)		• ³ substitute $2p$ and 9	• ³ $\frac{2p(2p+1)^2}{3}$ and $\frac{9(9+1)^2}{3}$	2	
				$\frac{2p(2p+1)^2}{3} - \frac{9(9+1)^2}{3}$		
			• ⁴ obtain expression	$\bullet^4 = \frac{2p(2p+1)^2}{3} - 300$		
Note	Notes:					
Com	Commonly Observed Responses:					

Qı	uestion	Generic scheme	Illustrative scheme	Max mark		
11.		 ¹ take logarithms of both sides and apply rule ¹ ² differentiate LHS 	• $\ln y = (2x^3 + 1)\ln x$ • $\frac{1}{y} \frac{dy}{dx}$	5		
		• ³ evidence use of product rule and one term correct ²	• ³ $6x^2 \ln x$ or $\frac{2x^3 + 1}{x}$			
		• ⁴ complete differentiation ²	• $6x^2 \ln x + \frac{2x^3 + 1}{x}$			
		• ⁵ write $\frac{dy}{dx}$ in terms of x	• $\frac{dy}{dx} = x^{2x^3+1} \left(6x^2 \ln x + \frac{2x^3+1}{x} \right)$			
Note	es:					
		og' in lieu of 'ln'. dates who do not attempt to use the p	roduct rule, \bullet^3 and \bullet^4 are not available	<u>.</u>		
Com	monly	Observed Responses:				
For o	candida	tes who express y as $e^{(2x^3+1)\ln x}$ marks matrix	y be awarded as follows:			
● ¹ is	not ava	ilable				
• ² W	riting in	the form $y = e^{\left(2x^3+1\right)\ln x}$				
	• ³ apply chain rule: $\frac{dy}{dx} = e^{(2x^3+1)\ln x} \times \frac{d}{dx} ((2x^3+1)\ln x)$					
● ⁴ ev	• ⁴ evidence use of product rule and one term correct : $6x^2 \ln x$ or $\frac{2x^3 + 1}{x}$					
	• ⁵ complete differentiation: $\frac{dy}{dx} = x^{2x^3+1} \left(6x^2 \ln x + \frac{2x^3+1}{x} \right)$ or $e^{(2x^3+1)\ln x} \left(6x^2 \ln x + \frac{2x^3+1}{x} \right)$					
Note	e: If a ca	Indidate writes $y = e^{(2x^3+1)} \ln x$, only matrix	rks \bullet^4 and \bullet^5 are available.			

Question	Generic scheme	Illustrative scheme	Max mark
12. (a)	 ¹ show half-turn symmetry and indicate (1, 2) 1,2 ² demonstrate graph approaching parallel asymptote through (0, 3) 3,4 	•1,2 y (1, 2) (-1, -2) -3 -3	2
 Evidence At •² acc Where a For Grap For Grap be availa 	e of $(1,2)$ may appear in cept $y = \frac{1}{2}x + 3$ in lieu a candidate's graph divector ob 1 in the Commonly C ob 2 in the Commonly C		ole.
	Graph 1 (-1, -2) (-1, -2) (-1, -2) (-1, -2) (-1, -2) (-1, -2) (-1, -2)	Graph 2 (one asymptote only)	x

Q	uesti	on	Generic scheme	Illustrative scheme	Max mark	
12.	(b)		 ³ apply modulus function to graph obtained in (a) ^{1,4} ⁴ illustrate asymptotes meeting on the <i>y</i> - axis ^{1,2,3} 	• 3,4 y (-1, 2) (1, 2) x	2	
Note	-			s graph from (a) must have a section lying in quadr		
3. A 4. SI	t ● ⁴ d howir	lisregang the		te's graph diverges from the asymptotes. The modulus function to asymptotes. The puired at • ³ .		
	(c)		State the range of val	ues of $f'(x)$ given that $f'(0) = 2$.		
			• ⁵ state range ^{1,2,3}	$\bullet^5 \frac{1}{2} < f'(x) \le 2$	1	
Com	mon	ly Ob	served Responses:			
	o not		ppt $\frac{1}{2} \le f'(x) \le 2$ or $\frac{1}{2} <$			
2. A	2. Accept ' $f'(x) > \frac{1}{2}$ and $f'(x) \le 2$ ' but not ' $f'(x) > \frac{1}{2}$ or $f'(x) \le 2$ '.					
3. A	ccept	t' <i>f</i> ′((x) is greater than $rac{1}{2}$ and	Ind $f'(x)$ is less than or equal to 2'. Do not accept '	f'(x)	
is	betv	veen	$\frac{1}{2}$ and 2'.			

Q	uestion	Generic scheme	Illustrative scheme	Max mark
13.		• ¹ write down contrapositive statement ^{1,2,7,8}	• ¹ The contrapositive of the original statement is :	4
			If <i>n</i> is odd then n^2 is odd	
		• ² write down appropriate form for $n^{-3,4,7}$	• ² $n=2k+1$, $k\in\mathbb{Z}$	
		• 3 show n^{2} is odd 5,6,7	• $n^2 = 2(2k^2 + 2k) + 1$ which is odd	
		• ⁴ communicate	• ⁴ contrapositive statement is true therefore original statement is true	
	other stat when <i>n</i> i The minir	tement masquerading as the contra s odd then n^2 is odd may be award num requirement for \bullet^1 is a stateme		
		$\Rightarrow n^2$ is odd then n^2 is odd		
		s a sufficient condition for n^2 is odd	1	
		only if n^2 is odd		
	n^2 is odd	when <i>n</i> is odd		
2		cept " <i>n</i> is odd, n^2 is odd" or " <i>n</i> is		
3.	At $\bullet^- k \in I$ number.		$n = 2k \pm a$, where a is a specified odd	
4.		dates who proceed from:		
	eg n	= 2n+1 = 2k • ² and • ⁴ are not ava • ² , • ³ and • ⁴ are not	available	
	eg n	=k+1 • ² , • ³ and • ⁴ are not	available $(n \text{ is not always odd})$ not all odd numbers covered by this form	
-				n)
		ept $n^2 = 4()+1$, $n^2 = 2k()+1$ or		
6. 7.		lidates must state a conclusion eg ' es who carry out a proof by contrad	iction may be awarded • ² and • ³ only.	

- 7. Candidates who carry out a proof by contradiction may be awarded \bullet^2 and \bullet^3 only. 8. Candidates who write $\neg Q \Rightarrow \neg P$ may be awarded \bullet^1 where they either identify P and
- Q or have written $P \Rightarrow Q$.

Questio	on Generic scheme	Illustrative scheme	Max mark
14.	• ¹ construct auxiliary equation ^{1,9}	• $m^2 - 6m + 9 = 0$	10
	• ² solve auxiliary equation and state CF ^{2,3,4,5,6,7,9}	$\bullet^2 y = Ae^{3x} + Bxe^{3x}$	
	• ³ state PI	• ³ $y = C \sin x + D \cos x$	
	4	$\frac{dy}{dx} = C\cos x - D\sin x$	
	 ⁴ obtain first and second derivatives of PI 	• ⁴ $\frac{d^2 y}{dx^2} = -C \sin x - D \cos x$	
	● ⁵ substitute		
	• ⁶ derive equations	8C + 6D = 8 • $^{6} -6C + 8D = 19$	
	 ⁷ obtain both constants of PI 	• ⁷ $C = -\frac{1}{2}, D = 2$	
	• ⁸ differentiate general solution ^{5,6,7,9,10}	• ⁸ $\frac{dy}{dx} = 3Ae^{3x} + Be^{3x} + 3Bxe^{3x} - \frac{1}{2}\cos x - 2\sin x$	
	• ⁹ determine first constant of general solution ^{7,8,9}	• $^{9} A = 5 \text{ or } B = -14$	
	 ¹⁰ determine second constant and state particular solution 3,7,9,10 	• ¹⁰ $y = 5e^{3x} - 14xe^{3x} - \frac{1}{2}\sin x + 2\cos x$	

- 1. \bullet^1 is **not** available where '=0' has been omitted.
- 2. •² can be awarded if the Complementary Function appears later as part of the general solution, as opposed to being explicitly stated immediately after solving the Auxiliary Equation.
- 3. Do not penalise the omission of ' y = ...' provided it appears at \bullet^{10} .
- 4. For candidates who obtain a CF of $y = Ae^{-3x} + Bxe^{-3x}$ only \bullet^2 is not available. In this case the

particular solution is $y = 5e^{-3x} + 16xe^{-3x} - \frac{1}{2}\sin x + 2\cos x$.

- 5. For candidates who obtain two real and distinct roots \bullet^2 and \bullet^8 are not available.
- 6. For candidates who obtain roots of the form $p \pm qi$: if p = 0 and $q \neq 1 \bullet^2$ and \bullet^8 are not available, otherwise only \bullet^2 is not available.
- 7. For candidates who obtain a CF of $y = Ae^{3x} + Be^{3x}$, \bullet^2 , \bullet^8 , \bullet^9 and \bullet^{10} are not available.
- 8. Where a candidate substitutes the given conditions into the CF to obtain values of A and B and then finds the PI correctly, \bullet ⁹ is not available.
- 9. Where a candidate does not find a PI only \bullet^1 , \bullet^2 , \bullet^8 , \bullet^9 and \bullet^{10} are available.
- 10. Where an error in the differentiation of the general solution results in the value of B being unobtainable then \bullet^{10} is not available.

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
15.	(a)		• ¹ obtain direction vector ^{1,2,4}	• ¹ $\mathbf{d} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix}$ or multiple thereof	2
			• ² state parametric equations ^{3,4,5}	• ² $x = 2\lambda + 7$ $y = 6\lambda + 8$ $z = -\lambda + 1$	
				or $x = 2\lambda - 3$	
				$y = 6\lambda - 22$ $z = -\lambda + 6$ Or equivalent	

- 1. For candidates who express the equation in either symmetric or vector form \bullet^1 is available for evidence of a correct direction vector; \bullet^2 is unavailable unless parametric equations appear at (c).
- 2. Throughout the question accept horizontal vector notation eg(2, 6, -1).
- 3. A correct answer with no working receives full marks.
- 4. For an incorrect answer containing the correct direction vector but with no working, •¹ is available.
- 5. For an answer with an incorrect direction vector and no working neither \bullet^1 nor \bullet^2 are available.

Commonly Observed Responses:

Unsimplified direction vector: $\mathbf{d} = \begin{pmatrix} -10 \\ -30 \\ 5 \end{pmatrix}$.

Parametric equations: $x = -10\lambda + 7$, $y = -30\lambda + 8$, $z = 5\lambda + 1$

Question	Generic scheme	Illustrative scheme	Max mark
(b)	• ³ identify vectors	• ³ any two from $\overrightarrow{PQ} = \begin{pmatrix} -1\\1\\-2 \end{pmatrix}$, $\overrightarrow{PR} = \begin{pmatrix} -5\\6\\-8 \end{pmatrix}$,	4
		$\overrightarrow{QR} = \begin{pmatrix} -4 \\ 5 \\ -6 \end{pmatrix} \text{or equivalent}$	
	• ⁴ evidence of strategy for finding normal ¹	• ⁴ $\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 1 & -2 \\ -5 & 6 & -8 \end{vmatrix}$ or equivalent	
	• ⁵ calculate normal	• ⁵ $\mathbf{n} = \begin{pmatrix} 4\\2\\-1 \end{pmatrix}$	
	• ⁶ obtain equation	$\bullet^6 4x + 2y - z = 1$	
Notes:	_		
1. Do not awa	rd \bullet^4 where the position	vectors of P, Q or R are used.	

Commonly Observed Responses:

Question		on	Generic scheme	Illustrative scheme	Max mark
	(c)		• ⁷ substitute into equation of plane	• ⁷ $4(2\lambda+7)+2(6\lambda+8)-(-\lambda+1)=1$	3
			• ⁸ find λ	• ⁸ $\lambda = -2$	
			• ⁹ determine coordinates of H ¹	• 9 H(3,-4,3)	

Notes:

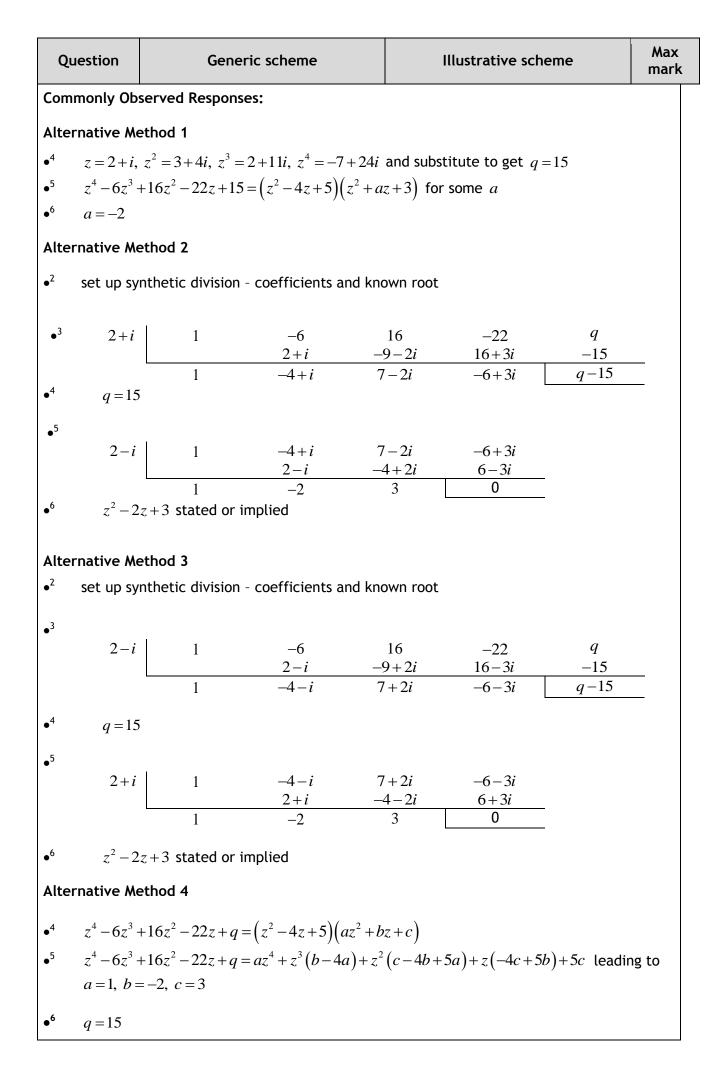
1. Do not accept a position vector at \bullet^9 .

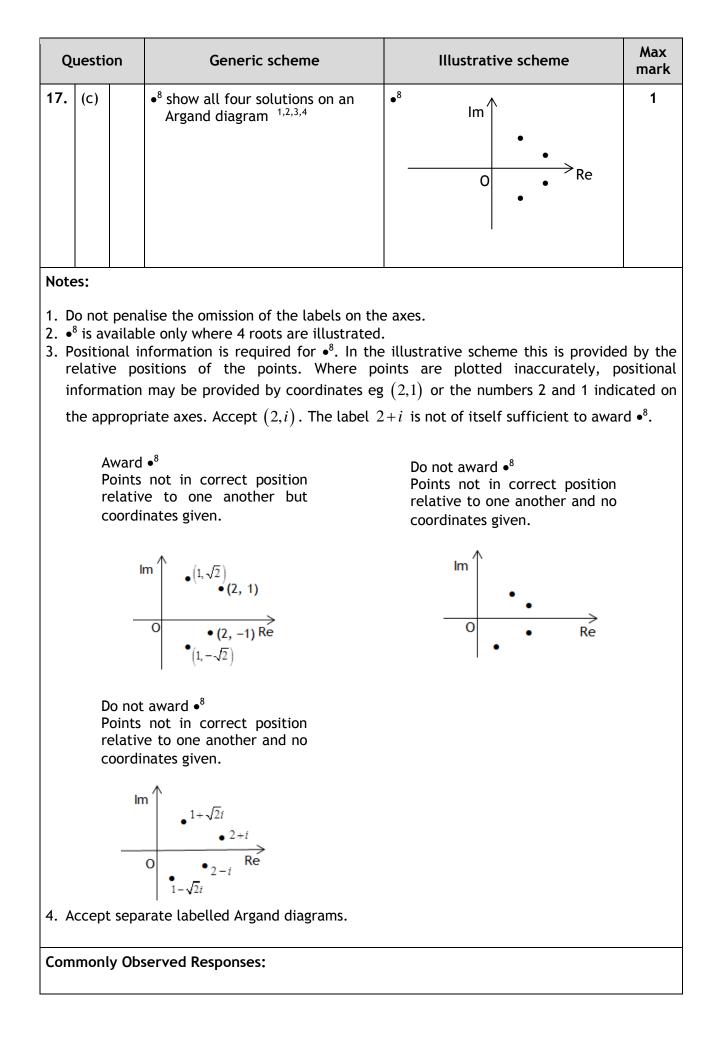
Commonly Observed Responses:

For candidates who use the unsimplified direction vector from **Commonly Observed Responses** in (a) , $\lambda = \frac{2}{5}$.

Question	Generic scheme	Illustrative scheme	Max mark
16.	• ¹ state form of integral	• ¹ $V = \pi \int x^2 dy$ or $V = \pi \int (f(y))^2 dy$	5
	• ² rearrange and substitute for x^2	• ² $V = \pi \int \left(9 - \frac{9}{4}y^2\right) dy$	
	• ³ calculate limits to match variable ⁴	• ³ $\int_0^2 dy$ or $y = 0, y = 2$	
	• ⁴ integrate	• ⁴ $V = \pi \left[9y - \frac{3y^3}{4}\right]_0^2$	
	• ⁵ evaluate ^{5,6}	• ⁵ $V = 12\pi$ (cubic units)	

- 1. dy must appear for \bullet^1 to be awarded.
- 2. \bullet^1 may be awarded at \bullet^2 .


3. For candidates who write
$$V = \pi \int x^2 dx$$
, $V = \pi \int y^2 dy$ or $V = \pi \int y^2 dx$ and proceed to:


(a) $V = \pi \int \left(9 - \frac{9}{4}y^2\right) dy$ full credit may still be available (b) $V = \pi \int \left(4 - \frac{4}{9}x^2\right) dx$ $\bullet^2, \bullet^3, \bullet^4 \text{ and } \bullet^5 \text{ may still be available}$ (c) $\pi\left[\frac{x^3}{3}\right]$ or $\pi\left[\frac{y^3}{3}\right]$ only \bullet^3 is available

- 4. •³ may be awarded at •⁴
 5. •⁵ is not available where a candidate's evaluation necessarily leads to a negative answer.
- 6. At \bullet^5 units are not required.

Question Gener		Generic scheme	Illustrative scheme	Max mark
7 (a)	•1 state second root	• ¹ 2- <i>i</i>	1
lotes	:			
Comm	nonly Ob	oserved Responses:		
(b)	• ² obtain two linear factors	• ² $z - (2+i), z - (2-i)$	6
		• ³ obtain quadratic factor	• $z^2 - 4z + 5$	
		• ⁴ set up algebraic division or equivalent	• ⁴ $z^2 - 4z + 5$ $z^4 - 6z^3 + 16z^2 - 22z + q$	
		• ⁵ complete algebraic division	• ⁵ $z^2 - 4z + 5$ $z^4 - 6z^3 + 16z^2 - 22z + q$ $z^4 - 4z^3 + 5z^2$ $-2z^3 + 11z^2 - 22z + q$	
			$-2z^{3} + 8z^{2} - 10z$ $3z^{2} - 12z + q$ $3z^{2} - 12z + 15$	
			q-15	
		• ⁶ state value of q ^{1,2}	• $q = 15$	
		• ⁷ obtain remaining two roots	• ⁷ $1\pm\sqrt{2}i$	
lotes		5	•' $1 \pm \sqrt{2}i$	

- For candidates who substitute either 2+i or 2-i into the equation, obtain a correct value of q but who do not exhibit any other working, only •⁶ may be awarded.
 •⁶ not available for a non-integer value of q.

Qı	uestio	on	Generic scheme	Illustrative scheme	Max mark
18.	(a)		• ¹ evidence of use of product rule to find either $\frac{dx}{dt}$ or $\frac{dy}{dt}$ with one term correct	• $\operatorname{eg} \frac{dx}{dt} = \cos t + \dots$	5
			• ² obtain $\frac{dx}{dt}$ or $\frac{dy}{dt}$	• ² $\frac{dx}{dt} = \cos t - t \sin t$	
			• ³ obtain remaining derivative	• ³ $\frac{dy}{dt} = \sin t + t \cos t$	
			 ⁴ state formula for instantaneous speed 	• ⁴ speed = $\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$ stated or implied at • ⁵	
			• ⁵ obtain expression 1,2	•5	
				$\sqrt{\left(\cos t - t\sin t\right)^2 + \left(\sin t + t\cos t\right)^2}$ $= \sqrt{1 + t^2}$	
	t•⁵t		mplification to $\sqrt{1+t^2}$ is not required be awarded for substitution into an	d. expression of the form $\sqrt{\left(\right)^2 + \left(\right)^2}$.	
Com	monl	y Ob	served Responses:		
	(b)		• ⁶ evidence of valid strategy to find value of <i>t</i> and obtain at least one non-zero solution ¹	• ⁶ $0 = t \sin t$ and eg $t = \pi$	2
			• ⁷ choose correct value for t and calculate speed ^{1,2}	• ⁷ $t = 3\pi$ speed = $\sqrt{1+9\pi^2}$	
Note	es:			·	
1. Fo	or cai	ndida	tes who obtain an expression for $\frac{dy}{dx}$	rather than instantaneous speed, $ullet^6$	and \bullet^7
aı	re stil	ll ava	ilable.		
			a decimal answer provided it is accu	urate to at least $3sf(9.48)$.	
Com	monl	y Ob	served Responses:		

[END OF MARKING INSTRUCTIONS]